What are Number Systems:

Number Systems are simply a way of representing numbers with different symbols. In everyday life we use the base-10/Decimal system to count and complete calculations.

Base-10/Decimal:

Symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Example:

$324_{10} = (3\times10^2)+(2\times10^1)+(4\times10^0)$

Base-2/Binary:

Symbols: 0, 1

Example:

$00100100_2 = (0\times2^7)+(0\times2^6)+(1\times2^5)+(0\times2^4)+

(0\times2^3)+(0\times2^2)+(0\times2^1)+(0\times2^0)$

This is equal to 36 in decimal.

This can also be written as 0b00100100

Base-16/Hexadecimal:

Symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

With A corresponding to 10, B: 11, . . . F: 15

Example:

$6B_{16} = (6\times16^1)+(B\times16^0)$

$6B_{16}= (6\times16^1)+(11\times16^0)$